LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2015

MT 1101 - MATHEMATICS FOR STATISTICS

Date: 11/11/2015
Dept. No. \square Max. : 100 Marks

Time: 01:00-04:00

PART A

Answer all the questions:

($10 \times 2=20$)

1. If $f(x)=(2 x-1)(x-3)$, find the values of $f(2)$ and $f\left(\frac{1}{2}\right)$.
2. Differentiate $6 x^{9}-2 x+\frac{1}{x}$ with respect to x.
3. For what values of x is $2 x^{3}-15 x^{2}-84 x+7$ a decreasing function?
4. Find the point of inflexion on $y=x^{3}-9 x^{2}+7 x-6$.
5. Using Maclaurin's series, expand $\tan x$ as an infinite series.
6. Find the first order partial differential coefficients of $u=\cos (7 x+4 y)$.
7. Integrate $\left(x+\frac{1}{x}\right)^{2}$ with respect to x.
8. Evaluate $\int \frac{d x}{4+9 x^{2}}$.
9. Write any two properties of definite integrals.
10. Find $\int_{1}^{2}\left(2 x^{2}+x-5\right) d x$.

PART B

Answer any FIVE questions:

(5 X $8=40$)
11. (a) Find the differential coefficient of $\log \left(\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right)$.
(b) If $y=x e^{x} \sin x$, find $\frac{d y}{d x}$.
12. Show that the curve $y=\frac{6 x}{x^{2}+3}$ has three points of inflexion.
13. Show that when x is positive, $x-\frac{1}{6} x^{3}<\sin x<x$.
14. If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that $x \frac{\partial^{2} u}{\partial y \partial z}=y \frac{\partial^{2} u}{\partial z \partial x}=z \frac{\partial^{2} u}{\partial x \partial y}$.
15. Integrate $x^{2} \cos 3 x$ with respect to x.
16. Evaluate $\int \frac{x}{\sqrt{x^{2}+x+1}} d x$.
17. Prove that $\int_{0}^{\frac{\pi}{2}} \log \sin x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)$.
18. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region for which $x, y \geq 0$ and $x+y \leq 1$.

PART C

Answer any TWO questions:

$(2 \times 20=40)$
19. (a) Evaluate $\lim _{x \rightarrow 1} \frac{x^{4}-3 x^{3}+2}{x^{3}-5 x^{2}+3 x+1}$.
(b) If $y=\sin x \sin 2 x \sin 3 x \sin 4 x$, find $\frac{d y}{d x}$.
(c) Differentiate $x^{(\log x)^{2}}$ with respect to $(x \log x)(\log \log x)$
20. (a) Find the maximum and minimum values of the function $y=x^{3}-18 x^{2}+96 x+4$.
(b) Verify Rolle's theorem for the following functions:
(i) $f(x)=(x-2) \sqrt{x}$ on $[0,2]$
(ii) $f(x)=(x-a)^{m}(x-b)^{n}$ on $[a, b]$
(iii) $f(x)=e^{x} \sin x$ on $[0, \pi]$
21. (a) Verify Euler's theorem when $u=x^{3}-3 x^{2} y+3 x y^{2}+y^{3}$.
(b) If $u=\log (\tan x+\tan y+\tan z)$, show that $\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2$.
(c) Integrate $\frac{x^{2}+2 x+5}{x^{2}+1}$ with respect to x.
$(8+5+7)$
22. (a) Evaluate $\int \frac{3 x+1}{(x-1)^{2}(x+3)} d x$.
(b) By transforming into polar coordinates, evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ over the annular region between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}(b>a)$.

